

An OSSE system to assess the meridional transport uncertainties along 34°S

Marlos Goes

5th XBT science meeting Tokyo, Oct 7, 2016

The Atlantic MOC is formed by the northward surface flow of warm waters and by the southward deep flow of cold waters, resulting in a net heat transport to the north called Meridional Heat Transport (MHT).

http://www.aoml.noaa.gov/phod/goos/xbtscience/mht_products.php

Simulating the AX18 transect

Salinity

- 0 800m: T-S lookup table
- 800m bottom: Climatology padding

Temperature

• 800m-bottom: Climatology padding

Geostrophic Velocity

- Reference level: $\sigma_2 = 37.09 \text{ Kg/m}^3$ **Time Sampling**: Quarterly **Spatial Sampling**:
- 25 km in the boundaries, 50 km in the interior

Observing System simulation experiment

- Use a model to simulate the observing system.
- Assume the true variability (nature run) is the original model estimates.
- Assess the uncertainty associated with the observing system by including or denying features of that system in the model.
- Test new ideas to improve the current observing strategy.

Model Energetics

Regional features compare well with observations.

 Model variability generally underestimated in hi-EKE regions, and overestimated in lo-EKE regions.

Meridional Transport

• Volume transport (AMOC) Streamfunction:

$$PSI = \int_{xE}^{xw} \int_{-H}^{z} v(x, z) dx dz$$

Reconstructed MHT

Effect of Salinity and Deep temperature estimates

The model salinity is replaced by the annual climatological mean using a lookup table (0-800m) and padding (800m-bottom)

olve seasonal

http://www.aoml.noaa.gov/phod/hdenxbt/ax_home.php?ax=18

Sampling	AMOC	MHT
5 years/ 4 x year	±1.7	±0.15
12 years/ 4 x year	±1.4	±0.13

Spatial Sampling

How the zonal resolution affects the reconstruction of the AMOC?

Region	AMOC	МНТ
Interior (50km)	-0.1±1.1	0.01±0.06
East (25 km)	1.0±1.4	-0.03±0.04
West (25 km)	1.7±2.4	0.03±0.06

Reference level and velocity

Vref	Bias(Sv)	RMS (Sv)
East + West	0.3	4.4

Reference depth (m)

How XBT measurement errors affect the AMOC and MHT estimates? ΔT (°C)

RMS error for the 34S temperature section

The errors associated with XBT manufacture tolerances account for **3% (0.38 Sv)** and **8% (0.025 PW)** of their mean values, for the AMOC and MHT, respectively

MOC sensitivity to historical XBT bias parameters

Historical AMOC and MHT trends from SODA

The distribution of the mean biases due to XBT after 2000 are statistically different than the CONTROL.

The XBT biases should be corrected for long term AMOC/MHT monitoring.

The location of AX18

Next steps: We will investigate the effect of transect location .

Other observing systems

Thank you