Estimating the meridional heat transport and overturning circulation from XBTs Molly Baringer

AX7 XBT POSITIONS

Motivation

The MOC/MHT can impact temperature, salinity, sea-level and ecosystems

Courtesy R. Lumpkin

Zhang and Wang (2013)

We need more insitu estimates of the MOC/MHT

Methodology Direct estimates of meridional volume, mass 40N and heat transport -atitude 30N across a section require T, S and velocity 20N observations: 20W 80W 60W 40W $H = \int \int \rho c_p \theta v \, dx \, dz \quad \left[PW = 10^{15} Watts \right]$ $v = v_g + v_{ag} + v_b$ Florida Current XBT observations (cable) V_{ref} uses $\sigma_0 = 27.6$ Mass Adjustments Win'd products or bottom (Mass=0)

(NCEP)

2 dyne cm⁻²

n

Using full hydrographic sections along 24°N using this methodology to estimate transport as if there was only XBT data to 850 m gives a mean error of 0.07 +/- 0.14 PW.

- •Barotropic adjustments of boundary transport increases transport from 27 to 32 Sv.
- •XBT sections occupied every three months resolve only the longer time scales.

Florida Current time series provides reference velocity and error estimates

- •MHT ranges from 0.02 to 1.34 PW.
- •Ekman HT contribution to MHT is minimal.
- •XBT observations form a lower bound on the true variability.

MHT TIME SERIES

•MOC is computed as a maximum of the volume transport integrated zonally along p surfaces.

- •Total MOC is 10 +/- 4 Sv
- •MOC ranges from 4 to 21 Sv.

MOC TIME SERIES

MOC is also dominated by the geostrophic transport

•MHT increases/decrea ses 0.58 PW for every 1 Sv change in the MOC

•This sensitively is slightly lower than 26°N (0.64 PW/Sv) and slightly higher than 35°S (0.05 PW/Sv)

Relationship between MHT and MOC

MHT is highly correlated with MOC

Seasonal Variability

Insignificant seasonal variability in MHT and

With only 15 years of data, the MHT had a seasonal cycle similar to 26°N (amplitude of 0.3 PW, summertime maximum).

Comparison with 26°N 3-month sampling prevents XBTs from resolving MHT events.

MOC in density coordinates

MOC in density coordinates is substantially larger than MOC computed by averaging in pressure.

- •MOC is 50% larger when computed in density coordinates vs. pressure coordinates.
- •MOC at 26°N decreases -5.2 +/-2.7 Sv/decade.
- •XBT decreased -5.6 +/- 4.6 Sv during the same period.
- However over full record insignificant changes (-0.5 +/- 1.7 PW).

CONCLUSION

Annual mean (1995-2014) heat transport AX7 (approximately 30°N) = 0.86 PW with a standard deviation of +/- 0.22 PW, this lies between the 26°N and 41°N MHT estimates.

Annual mean MOC transport = 10.1 Sv with a standard deviation = +/-3.95 Sv, which is much lower than the estimates at 26°N (17.3 Sv) and 41°N (13.8 Sv).

How can the MHT attain such high values when the MOC is so low?

CONCLUSION

- No secular trend in MOC or MHT from XBT data and there is clear interannual/decadal variability.
- MOC in density coordinates 50% larger than in pressure coordinates. Variability similar, yet different.
- The heat transport mean and variability is dominated by the geostrophic heat transport (0.82 PW +/- 0.32 PW).
- Ekman transport is low: 0.046 PW +/- 0.11.
- Short term variability is large: MHT ranging from 0.02 to 1.34 PW and the MOC from 4 to 21 Sv.
- The annual cycle appears to be insignificant.

Why are some events reproduced in both calculations of the MOC, while others are not?

24N Hydrographic Sections Verify Method

Full Section Mean Diff Stnd Dev

2010

Using full hydrographic sections along 24N using various choices to estimate transport as if there was only XBT data to 800 m gives a mean error of 0.07 +/- 0.14 PW

