Estimating the meridional heat transport
and overturning circulation from XBTs

Molly Baringer
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Motivation

The MOC/MHT can impact temperature, salinity, sea-level
and ecosystems
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MOC = max j j P(x,z) dx dz
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A strong MOC
IS associated

with warm
SST in the

80W 55W 30W 5W North Atlantic.
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Courtesy R. Lumpkin Zhang and Wang (2013)




We need more insitu estimates of the MOC/MHT
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Salinity

73 complete sections along
AX7 since 1995

Levitus climatology provides
a T/S look-up for missing
salinity and any data below
the depth of the XBT.
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Direct estimates of
meridional volume, mass
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Using full hydrographic sections along 24°N using this methodology to
estimate transport as if there was only XBT data to 850 m gives a
mean error of 0.07 +/- 0.14 PW.




Florida Current time series provides
reference velocity and error estimates
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MHT TIME SERIES

MHT dominated by geostrophic flow

T Geostrophic 0.82 + 0.23 PW
14 Total 0.86 = 0.22 PW 1
*MHT ranges 1oL Ekman 0.046 + 0.11 PW ]
from 0.02 to
1.34 PW. =
o
*Ekman HT g -
contributionto £ 06 ]
MHT is minimal. £ | _
(O]
XBT T 0.0
observations
form a lower 0
bound on the 0.2
true variability.
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Heavy line is 24 month low pass filter of total MHT



MOC TIME SERIES

MOC is also dominated by the geostrophic transport
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Geostrophic 9.61 + 4 Sv

MOC is | aeasss s
computed as a

maximum of the
volume transport_ | '
integrated
zonally along p
surfaces.
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*MOC ranges
from 4 to 21 Sv.
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‘MHT
increases/decrea
ses 0.58 PW for
every 1 Sv

change in the
MOC

*This sensitively is
slightly lower
than 26°N (0.64
PW/Sv) and
slightly higher
than 35°S (0.05
PW/Sv)

MHT is highly correlated with MOC
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Relationship between MHT and MOC
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. Correlation = 0.82

0.058 PW per 1 Sv MOC
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Seasonal Variability

Insignificant seasonal variability in MHT and
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With only 15 years of data, the MHT had a seasonal cycle
similar to 26°N (amplitude of 0.3 PW, summertime maximum).




Comparison with 26°N

3-month sampling prevents XBTs from resolving MHT events.
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XBT 0.86 + 0.22 PW
26°N 1.25 + 0.36 PW
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*MHT is -0.4 PW
lower than at 26°N
1 and +0.4 PW
higher than the 0.5
1 PW reported at
41°N
Trends:
+26°N
-0.3 +/-0.25
PW/decade
*XBT during 26°N
1 array

-0.13 +/-0.28
PW/decade
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(See Johns et al. 2011; McCarthy et al. 2013)

2012

* XBT full record
-0.03 +/- 0.08
PW/decade



MOC in density coordinates
MOC in density coordinates is substantially larger than MOC

computed by averaqmq IN pressure

*MOC is 50% larger 30

when computed In
density coordinates
VS. pressure
coordinates.

*MQOC at 26°N
decreases -5.2 +/-
2.7 Sv/decade.

XBT decreased -5.6

N
o

Transport, Sv

RN
o

same period.

However over full
record insignificant
changes (-0.5 +/- 1.7
PW).
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CONCLUSION

« Annual mean (1995- 26°N array
2014) heat transport AX7
(approximately 30°N) =
0.86 PW with a standard
deviation of +/- 0.22 PW,
this lies between the 26°N
and 41°N MHT estimates.

 Annual mean MOC
transport = 10.1 Sv with a
standard deviation = +/-
3.95 Sv, which is much s 40 £ : N o
lower than the estimates at

26°N (17.3 Sv) and 41°N _
(13.8 Sv). XBT estimates

----------
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How can the MHT attain such high values when the MOC is so low?




CONCLUSION

* No secular trend in MOC or MHT from XBT data and there
IS clear interannual/decadal variability.

* MOC in density coordinates 50% larger than in pressure
coordinates. Variability similar, yet different.

* The heat transport mean and variability is dominated by the
geostrophic heat transport (0.82 PW +/- 0.32 PW).

« Ekman transport is low: 0.046 PW +/- 0.11.

« Short term variability is large: MHT ranging from 0.02 to
1.34 PW and the MOC from 4 to 21 Sv.

* The annual cycle appears to be insignificant.

Why are some events reproduced in both calculations of the
MOC, while others are not?




Transport positive northward (Sv)

RAPID/MOCHA
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Lower Limb
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24N Hydrographic Sections Verify Method

1957
1981
1992
1998

Total Heat Transport (Mass=0) 2004

Full Section Mean Diff Stnd Dev
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1950

1960

1970

1980

1990
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2010

1.41 0.12 0.07
1.32 -0.06 0.09
1.58 0.16 0.06
0.96 -0.07 0.06
1.1 0.22 0.02
0.07 0.14

Using full hydrographic
sections along 24N using

| various choices to
| estimate transport as if
| there was only XBT data

to 800 m gives a mean

| error of 0.07 +/- 0.14 PW



