Interannual variability of the western boundary current of the Bay of Bengal: 25 years of repeated XBT sections

Sherin V Raju, Fabien Durand, Chaitanya A V S, Gopalkrishna V V

XBT – Science Workshop, Tokyo

presented by : Dr.V.V. GopalKrishna National Institute of Oceanography Goa , India, gopal@nio.org

Background of the Study area (Bay of Bengal)

- Semi enclosed tropical basin, restricting northward transport of Heat & Mass.
- Evaporation Précipitation is always ve
- Strong haline stratification, shallow mixed layer,

4^o - 5^oC Temp. Invensions

Devastating Tropical Cyclones

- Seasonal riversal of monsoonal winds, July (Southwesterlies) & January (Northeasterlies)
- Western BoB is prone to strong mesoscale eddies; influencing the coastal currents.

Background of the study area (Bay of Benga

- East India Coastal Current (EICC). Poleward (Feb Sep) & Equatorward (Oct Jan)
- EICC participates in the Exchange of Water Masses between basins.

Summer

Winter

(Schott & McCreary, 2001)

XBT Observations

- T-7 XBT probes
- 1990 continuing (25 years)
- Monthly voyages
- SSS Samples: at all XBT Stations

XBT data density (25 years

25'

20'

15'

10'

5°

0° L 70° INDIA

Chen

75°

80"

85"

BoB

90"

15

Port Blair

95"

100

Chennai – Port Blair Transect : 1990 - continuing

Computational strategy of geostrophic cu

- Carried out running averages for 1^ox1^o bin for each XBT transect.
- Monthly T-S relationship is developed from NIOA climatology.
- Using this T-S relation, salinity values are synthesized for each XBT (t) values.

Computational strategy of geostrophic cu

Density profiles are computed for each XBT (t) & Synthesized salinity.

Crosstrack geostrophic currents are computed w.r.t 700m reference level

$$V = \frac{g}{f\rho} \frac{\partial}{\partial x} \int_{-h}^{0} \rho(z) \, dz$$

• A Hanning filter is applied to remove small scale fluctuations

Boundary current is flowing northward during Summer (Dark shade

Eequatorward during Winter (Blue shade)

Seasonal climatology of geostrophic currents

Volume transport shows seasonal reversal (southward) during post monsoon. Varies between 5Sv northward & 3Sv southward
Time window of equatorward flow which transports low salinity waters is small.

What drives this Inter- annual Variability of the Western Boundary Current Transports ??

Whether IOD events influence the currents in the Bay of Bengal **??**

Results

The Dipole Mode Index (DMI)

Saji *et al.* (1999) define DMI as the difference between the SST anomalies in the western equatorial Indian Ocean (50°E to 70°E, 10°S to 10°N, Western basin) and the southeastern tropical Indian Ocean (90°E to 110°E, 10°S to the Equator, Eastern basin).

Positive Dipole Mode

As per the above, definition the following years are considered as^{3.0} +ve IOD & -ve IOD years; 1991, 94, 97, 2006,11,12,15. ^{2.0} 1992, 96, 98, 2010.

Circles represents IOD years, $\frac{\circ}{3}$ Where we have XBT data.

What can 25 years of XBT repeated sections tell us ?...

Results

Composites of current anomalies for IOD & Non – IOD years: Sep, Oct, Nov

•The anomaly composites shows clear signature of the influence of IOD events in the WBC.

 +ve IOD composite shows northward anomaly & -ve IOD southward anomaly.

•For normal years the anomaly is close to zero.

• The anomalous currents are narrow & at least 700m deep.

Composites of Transport for IOD Years

•The influence of IOD in the WBC is manifested by anomalous poleward transport (5.21 Sv, +ve IOD) & anomalous equatorward transport (6.56 Sv, -ve IOD).

• The transport anomaly for +ve IOD and –ve IOD are distinct from each other after accounting for the standard deviations.

Results

Low correlation (0.24) between DMI time Series & WBC Variability indicates that, although Western Boundary Current transports showed distinct signature of + ve IOD & - ve IOD events, it appears that most of the Year-to-Year variability is not related to IOD events.

Other factors contributing to the Variability looks to be;

- Mesoscale Turbulence
- ➢Instabilites of the WBC
- Local Winds

The western boundary of the BoB: a key region of the tropical climate variability.

- 25 years of repeat XBT sections: an unprecedented coverage in a data-sparse region.
- The variability of the WBC is dominated by remote forcing from equatorial ocean, during IOD years.
- This manifests as narrow, deep (700m) anomalous transport
- WBC Location: off the shelf break slope region.
- We must have Pluri Annual monitoring of WBC transport

Aside from remote forcing, local forcing (turbulence / local winds) apparently prominent in WBC modulation.

